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Here the electron-phonon Holstein model with Rashba spin-orbit interaction is studied for a two-dimensional
square lattice in the adiabatic limit. It is demonstrated that a delocalized electron at zero spin-orbit coupling
localizes into a large polaron state as soon as the Rashba term is nonzero. This spin-orbit induced polaron state
has localization length inversely proportional to the Rashba coupling � and it dominates a wide region of the
�-� phase diagram, where � is the electron-phonon interaction.
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I. INTRODUCTION

Spin manipulation and control is at the core of spintron-
ics, a technology that uses the spin of the electrons, rather
than their charge, to transfer and/or process information.1,2

The Rashba spin-orbit �SO� coupling arising in materials
lacking structural inversion symmetry3 plays a leading role
in this field because its strength can be tuned by an applied
electric field and by specific material engineering methods.
The SO induced lifted spin degeneracy may then be used in
spin filtering devices and spin transistors.

Whether the main effect of SO coupling is limited to the
spin splitting or it is accompanied by substantial modifica-
tions in other electronic properties, which could be detrimen-
tal for the spin propagation, is of course crucial for the func-
tioning of spin-based devices. In this respect, an important
issue calls into play the role of the SO interaction on the
coupling of electrons to the lattice vibrations �phonons�. In
particular, a sensible problem is whether the polaron, that is
the quasiparticle composed by the electron and its phonon
cloud, is strengthened or weakened by the Rashba SO inter-
action.

In previous works, an enhancement of the polaronic char-
acter has been obtained for a two-dimensional �2D� electron
gas with linear Rashba coupling for both short-range �Hol-
stein model Ref. 4� and long-range �Fröhlich model Ref. 5�
electron-phonon �el-ph� interactions.6–8 On the contrary, a
recent calculation on the 2D tight-binding Holstein-Rashba
model on the square lattice has shown that a large el-ph
interaction gets effectively suppressed by the Rashba SO
coupling.9 At present, therefore, the role of the Rashba SO
coupling on the polaron properties is not clear and different
models and approximations appear to give quite contradict-
ing results.

In this article, the tight-binding Holstein-Rashba model
for one electron coupled to adiabatic phonons is considered
and the corresponding nonlinear Schrödinger equation for
the polaron wave function is solved numerically. It is shown
that, for el-ph couplings such that the electron is delocalized
in the zero SO limit, the Rashba term creates a large polaron
state, with polaron localization length inversely proportional
to the SO strength. Furthermore, the small polaron regime
appearing at large el-ph couplings and zero SO gets weak-
ened �or even suppressed� for sufficiently strong SO cou-
plings. Hence, the Holstein-Rashba polaron is strengthened

or weakened by the SO interaction depending on whether the
el-ph coupling is respectively weak or strong, thereby recon-
ciling the different trends reported in Refs. 6 and 9 into one
single picture.

II. MODEL

By presenting the spinor operator �R
† = �cR↑

† ,cR↓
† �, where

cR�
† creates an electron with spin �= ↑ ,↓ on site R, the tight-

binding Holstein-Rashba Hamiltonian on the square lattice
can be written as H=H0+Hph+Hel−ph, where10

H0 = − t�
R

��R
† �R+x̂ + �R

† �R+ŷ�

− i
�

2 �
R

��R
† �y�R+x̂ − �R

† �x�R+ŷ� + H.c., �1�

is the lattice Hamiltonian for a free electron with transfer
integral t and SO coupling �. �x, and �y are Pauli matrices.
The lattice constant is taken to be unity and x̂ and ŷ are unit
vectors along the x and y directions, respectively. The Hamil-
tonian �1� is easily diagonalized in momentum space and the
resulting electron dispersion is composed of two branches:
Ek

�=−2t�cos�kx�+cos�ky�����sin�kx�2+sin�ky�2. The lowest
branch, Ek

−, has a fourfold degenerate minimum
E0=−4t�1+�2 / �8t2� for momenta k= ��k0 , �k0� with
k0=arctan�� / ��8t��.9 The Hamiltonian for Einstein phonons
with mass M and frequency �0 is given by:

Hph = �
R
� PR

2

2M
+

1

2
M�0

2XR
2 � , �2�

where PR and XR are impulse and displacement phonon op-
erators. Finally, the el-ph Hamiltonian contribution is

Hel−ph = �2M�0g�
R

�R
† �RXR, �3�

where g is the el-ph interaction matrix element.
The �quasi-�2D materials and heterostructures which dis-

play nonzero Rashba couplings �semiconductor quantum
wells, surface states of metals and semimetals� are wide elec-
tron bandwidth systems with t of the order of 1 eV, while the
typical phonon energy scale is of the order of few to tens
meV.11 These systems are expected therefore to be well
within the adiabatic regime �0 / t	1. In the following, how-
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ever, only the strict adiabatic limit �0 / t=0 is considered,
which simplifies considerably the problem and, as shown
below, permits to identify the critical parameters governing
the electron localization transitions.

The adiabatic limit �0 / t=0 is obtained formally from
Eqs. �2� and �3� by setting M→
 and keeping K=M�0

2 fi-
nite. Since for M→
 the phonon kinetic energy is zero, the
ground state in the adiabatic limit is obtained by finding the
displacement configuration XR

0 which minimizes the total en-
ergy E= 	H
, where the brackets mean the expectation value
with respect to the electron wave function and the lattice
displacement. Hence, since by Hellmann-Feynman theorem
XR

0 =�2M�0g	���R
† �R��
 /K, the ground-state energy be-

comes

EGS = 	��H0��
 − EP�
R

	���R
† �R��
2, �4�

where EP=g2 /�0 is independent of M and
��
=�R,��R�cR�

† �0
. The ground-state electron wave func-
tion �R� can be found from Eq. �4� by applying the varia-
tional principle, leading to the following nonlinear
Schrödinger equation:


�R = − t �
n=�

��R+nx̂ + �R+nŷ� − 2EP��R�2�R

− i
�

2 �
n=�

n��y�R+nx̂ − �x�R+nŷ� , �5�

where �R= ��R↑
� ,�R↓

� �+ and 
=EGS+EP�R��R�4. Finally, the
ground-state energy EGS is obtained by solving Eq. �5� itera-
tively, with �R,���R��2=1, and by inserting the resulting
wave function into Eq. �4�.

III. RESULTS

Solutions of Eq. �5� for lattices of N=101�101 sites are
plotted in Fig. 1 as a function of the el-ph coupling constant
�=EP / �4t�=g2 / �4t�0� and for four different values of �. For
�=0, Fig. 1�a�, we recover the well-known behavior of the

adiabatic Holstein model in two dimensions:12 a delocalized
solution with EGS=E0=−4t �filled circles� extending to the
whole range of � values considered, and a localized one
�filled squares� having energy lower than E0 for
����=0.835. The delocalized/localized nature of the solu-
tions is illustrated in the inset of Fig. 1�a� where the electron
density probability ��R�2=����R��2 is plotted for R=0. The
solution having lower energy for ���� is a small polaron
state, with more than 90% of its wave function localized at
the origin.

Let us now consider the ��0 case. As shown in Figs.
1�b� and 1�c�, a nonzero Rashba term gives rise to a feature
absent for �=0. Namely, besides the two solutions already
discussed for the �=0 case, a third solution appears �filled
triangles�, which has lower energy than the delocalized and
small polaron states in a region of intermediate values of �.
It is thus possible to identify a second critical coupling, ���

such that for �������� the ground state is given by this
third solution. Furthermore, the transition to the small po-
laron state �identified by ��� gets shifted to larger el-ph cou-
plings as � / t increases, thereby confirming the results of Ref.
9 obtained by a different method and for �0 / t�0. A map of
the behavior of �� and ��� as � is varied is reported in the
� / t-� phase diagram of Fig. 2, where the filled circles are the
calculated values of ���, while the filled squares mark the
onset of the small polaron regime ����.13 The resulting dia-
gram is therefore composed of three separate regions: a de-
localized electron with EGS=E0 for � / t���� �white region�,
a small polaron state for large el-ph couplings ������ and a
ground state in the region comprised between the ��� and ��

lines.
As it can be inferred from the insets of Fig. 1 and from the

gray �violet� scale of Fig. 2, in this region the density prob-
ability at R=0, ��0�2, is lower than the small polaron solu-
tion, but substantially larger than zero as long as ��0, and
increasing with � / t. The region between the ��� and �� lines
identifies therefore a large polaron state created by the SO
interaction, with a localized wave function which may extent
over several lattice sites. The large polaron nature of this
solution is substantiated in Fig. 3, where the polaron local-

FIG. 1. �Color online� Total energy difference �E=E−E0 for the adiabatic Holstein-Rashba model as a function of the el-ph coupling �
and for different values of the SO Rashba interaction �. E0 is the ground-state energy for �=0. Different symbols refer to different solutions
of the nonlinear Schrödinger Eq. �5�, and the ground state is given by the solution with lower �E values. Insets: corresponding electron
density probability at R=0.
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ization radius RP, extracted from a fit of ��R�2 to
exp�−�R� /RP� �see inset�, is plotted as a function of � / t for
�=0.4, 0.6, and 0.8. Although a numerical evaluation of RP
for � / t→0 is hampered by the finite size of the lattice, RP
turns out to be approximately proportional to t /�, suggest-
ing, therefore, that the large polaron evolves continuously
toward a delocalized electron as � / t→0.

Further insight on the large polaron state, and in particular
on its behavior as � / t→0, can be gained by a simple varia-
tional calculation in the continuum. In fact, as long as RP is
much larger than the lattice constant �RP�1� then an upper
bound for EGS can be obtained from a minimization of the
energy functional

E���r�� =� dr�†�r��tp̂2 + ���yp̂x − �xp̂y����r�

− EP� dr���r��4, �6�

where p̂q=−i� /�q is the electron momentum operator
�q=x ,y and �=1� and p̂2= p̂x

2+ p̂y
2. In the above expression,

��r� is a suitable ansatz for the ground-state spinor, which is
assumed to vary slowly over distances comparable to the
lattice spacing. In writing Eq. �6�, only the lowest order
terms in the lattice constant have been retained, which
amounts to consider a parabolic band with a Rashba coupling
linear in the momentum operators. One can then use for ��r�
an ansatz which has been already introduced in studying the
effects of a linear Rashba term on the 2D Fröhlich polaron
and the 2D hydrogen atom:8,14

��r� = A exp�− ar�
 J0�br�
J1�br�ei�� . �7�

Here, r= �r� and � is the azimuthal angle, A is a normaliza-
tion constant, J0 and J1 are Bessel functions and a and b are
variational parameters. By using Eq. �7� and the properties of
the Bessel functions, Eq. �6� reduces to

E = t�a2 + b2� − �b −
EP

2�

�0

drre−4arF�br�2

��0

drre−2arF�br��2

� t�a2 + b2� − �b −
2EPa2

�
ln� b

�ea
� , �8�

where F�br�=J0�br�2+J1�br�2. The second equality stems
from assuming a	b, which is the relevant limit of the large
polaron regime. Minimization of E with respect to a
and b leads to two possible solutions: b=� / �2t� and
a=0, which corresponds to a delocalized electron with
Emin=E0=−4t−�2 / �4t� and

a = b exp�− 1 −
�

8�
�, b =

�/�2t�
1 − 4� exp�− 2 − �/�4���/�

,

�9�

which represents the large polaron solution with

Emin − E0 = −
�

�

�2

t
exp�− 2 −

�

4�
� , �10�

for � small. Since Eq. �10� is an upper bound for
�EGS=EGS−E0, then that the large polaron state has energy
always lower than the delocalized electron. Furthermore, by
realizing that the variational parameter a represents the po-
laron radius through a=1 / �2RP�, it turns out from Eq. �9�
that RP scales as t /�, in agreement therefore with the results
of Fig. 3.

The finding that a large polaron is formed for � / t�0 is in
accord with the observation of Ref. 6 that perturbation theory
breaks down in the adiabatic limit for any finite �. This
breakdown basically stems from the one-dimensional-like di-
vergence of the density of states �DOS� of a parabolic band
with linear Rashba coupling.6,7

FIG. 2. �Color online� Phase diagram of the 2D adiabatic
Holstein-Rashba model. The ��� and �� transition lines are the
phase boundaries separating the different states of the polaron. The
dashed curve has been obtained from the maximum of d2E /�2 and
identifies a smooth crossover from large to small polaron for large
� / t values. The solid line is the variational result of Eq. �12�. The
graded gray �violet� scale refers to the polaron density probability at
R=0.

FIG. 3. �Color online� Polaron radius RP of the large polaron
state as a function of � / t and for different el-ph couplings �. Inset:
density probability �symbols� of the large polaron for �=0.4 and
� / t=0.25, 0.5, and 1.0 as a function of distance R= �R� along the
�1,0� direction. The solid lines are fits to exp�−�R� /RP�.
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Although the variational result presented above correctly
predicts the appearance of the large polaron state as soon as
� / t�0, it fails nevertheless in describing the ��� transition
line of Fig. 2 separating the large polaron state from the
delocalized solution. This is because the lowest order expan-
sion in the lattice constant of Eq. �6� neglects higher-order
powers of the momentum operator arising from the lattice
Rashba term, which shift the van Hove divergence of the
DOS from E0 to higher energies,9 thereby making the pertur-
bation theory nonsingular. To investigate this point within
the variational method, it suffices to expand the discrete
Hamiltonian up to the third order in the lattice constant. This
corresponds to add to the energy functional �6� the following
contribution

E����R�� =
�

6
� dr�†�r���xp̂y

3 − �yp̂x
3���r� , �11�

which, by using again the ansatz �7� and for a	b, leads to
the third-order correction term E�= �� /8��b3+3a2b−�a3� to
Eq. �8�. It is then easy to shown that �E+E��min−E0 is
negative �with E0=−4t−�2 / �4t�+�4 / �128t3�� as long as
� / t��var

�� , where for � small

�var
�� = 8�2�

�
exp�− 1 −

�

8�
� . �12�

Although Eq. �12� provides only a lower bound for ��� �solid
line in Fig. 2�, it shows nevertheless that, as � / t is enhanced
for fixed �, the transition from the large polaron to the delo-
calized electron state originates from higher order of the SO
interaction than the linear Rashba coupling.

IV. DISCUSSION AND CONCLUSIONS

Let us discuss now the significance of the results reported
above for materials of interest and possible consequences for
spintronics applications. First of all, it is important to iden-
tify the region in the phase diagram of Fig. 2 where realistic
values of � / t and � are expected to fall. This is easily done
by realizing that the largest Rashba SO coupling to date is
that found in the surface stats of Bi/Ag�111� surface alloys15

for which � / t�1.4 can be estimated. Other 2D systems and
heterostructures have lower or much lower � / t values. Con-
cerning the coupling to the phonons, a survey16 on the el-ph

interaction at metal surfaces evidences that � is usually lower
than 0.6–0.7 �see also Ref. 17�, at least for the surface states
with large SO splittings �i.e., Ag, Cu, and Bi�. It is, therefore,
a rather conserving assumption to confine to � / t�1 and
��1 the region of interest for the microscopic parameters
which, as shown in Fig. 2, is substantially dominated by the
SO induced large polaron state. Hence, upon tuning of the
Rashba SO coupling, a delocalized electron at � / t=0 can in
principle be changed into a self-trapped large polaron state
for � / t�0, with obvious consequences on the spin propaga-
tion in the system. In passing, it is worth noticing that the
small polaron regime instead is affected rather weakly by the
SO interaction for � / t�1, while its weakening gets pro-
nounced only for unrealistically large values of � / t �see also
Fig. 1�.

Before concluding, it is important to discuss a last impor-
tant point. Although the adiabatic limit employed here allows
for a clear identification of the �� and ��� transition lines, the
energy gain associated to the large polaron formation be-
comes very small in the weak coupling and small SO limits
�see Eq. �10��. In this regime, the inclusion of quantum fluc-
tuations which arise as soon as �0 / t�0 may wash out com-
pletely any signature �such as e.g., an anomalous enhance-
ment of the electron effective mass m�� of the large polaron
state, even for �0 / t small, while they should remain visible
for larger � and � / t values. For a more complete description
of the SO effects on the Holstein-Rashba polaron, it is there-
fore necessary to extend the study to the nonadiabatic regime
�0 / t�0, by keeping however in mind that, as discussed
above, relevant materials have �0 / t	1.

In summary, the complete phase diagram of the 2D adia-
batic Holstein el-ph Hamiltonian in the presence of Rashba
SO coupling has been calculated. It has been shown that a
self-trapped large polaron state is created by the SO interac-
tion in a wide region of the phase diagram and that its local-
ization radius can be modulated by the SO coupling. This
result implies that, for realistic values of the microscopic
parameters, the appearance of a self-trapped large polaron
state is a potentially detrimental factor for spin transport.
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